Kamis, 20 Februari 2020
Math9
Baris Aritmatika
Baris aritmatika merupakan baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui penjumlahan atau pengurangan dengan suatu bilangan b. Selisih antara nilai suku-suku yang berdekatan selalu sama yaitu b. Sehingga:
U_n - U_{(n - 1)} = b
Sebagai contoh baris 1, 3, 5, 7, 9, merupakan baris aritmatika dengan nilai:
b = (9 – 7) = (7 – 5) = (5 – 3) = (3 – 1) = 2
Untuk mengetahui nilai suku ke-n dari suatu barisan aritmatika dapat diketahui dengan mengetahui nilai suku ke-k dan selisih antar suku yang berdekatan (b). rumusannya berikut ini:
U_n = U_k + (n - k)b
Jika yang diketahui adalah nilai suku pertama U_k = a dan selisih antar sukunya (b), maka nilai k = 1 dan nilai U_n adalah:
U_n = a + (n - 1)b
Barisan Geometri
Baris geometri adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan r. Perbandinganatau rasio antara nilai suku dengan nilai suku sebelumnya yang berdekatan selalu sama yaitu r. Sehingga:
\frac{U_n}{U_{(n - 1)}} = r
Sebagai contoh baris 1, 2, 4, 8, 16, merupakan baris geometri dengan nilai
r = \frac{16}{8} = \frac{8}{4} = \frac{4}{2} = \frac{2}{1} = 2
Untuk mengetahui nilai suku ke-n dari suatu barisan geometri dapat diketahui dengan mengetahui nilai suku ke-k dan rasio antar suku yang berdekatan (r). Rumusannya berikut ini:
U_n = U_k \cdot r^{(n - k)}
Jika yang diketahui adalah nilai suku pertama U_k = a dan rasio antar sukunya (r), maka nilai k = 1 dan nilai U_n adalah:
U_n = a \cdot r^{(n - 1)}
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar