Kamis, 10 Februari 2022

Math 9

 Matematika

Kelas IX


Bangun Ruang Sisi Lengkung
Membuat generalisasi luas permukaan dan volume berbagai bangun ruang sisi lengkung (tabung, kerucut, dan bola)

Assalamualaikum Wr. Wb.

Apa kabar sholeh sholehah?
Semoga selalu dalam keadaan sehat dan bahagia. Aamiin.
Alhamdulillah hari ini dapat bertemu bersama untuk belajar matematika yang menyenangkan.
Selalu jaga kesehatan dan beribadah kepada Alloh SWT. Semoga selalu istiqomah dalam melaksanakan sholat dhuha dan sholat lima waktu.
Sebelum memulai pembelajaran mari bersama-sama kita berdoa terlebih dahulu.
Tujuan pembelajaran pada pertemuan hari ini adalah agar peserta didik dapat membuat generalisasi luas permukaan dan volume bangun ruang sisi lengkung kerucut.


Bangun Ruang Sisi Lengkung

Ciri-Ciri Kerucut

Aku tau kamu pasti udah penasaran sama rumus luas permukaan kerucut. Sebelum masuk ke pembahasan tersebut, aku mau ngenalin sedikit, nih, terkait ciri-ciri bangun ruang yang satu ini.

Secara garis besar, kerucut memiliki bentuk yang mirip dengan limas, apa sih bedanya limas? Dalam KBBI (Kamus Besar Bahasa Indonesia), kerucut adalah benda (ruang) yang beralaskan bundar dan meruncing pada suatu titik. 

bentuk cone atau kerucut
Bentuk cone bisa kamu temukan dalam keseharian, salah satunya adalah cone es krim (Source: Pixabay).

Sedangkan menurut Britannica, cone dalam matematika merupakan permukaan dilacak oleh garis lurus yang bergerak yang selalu melewati suatu titik tetap (titik puncak). Biar kalian lebih paham, berikut dibawah ini ciri-cirinya:

  • Memiliki 2 sisi
  • Alasnya berbentuk lingkaran,
  • Sisi tegaknya merupakan irisan dari lingkaran
  • Memiliki 1 rusuk.
  • Memiliki 1 titik puncak.

Bangun ruang ini dapat sering kita lihat dalam kehidupan sehari-hari. Beberapa contohnya seperti barang-barang di bawah:

  • Corong
  • Cetakan kue
  • Cone jalanan
  • Topi ulang tahun

Rumus Luas Permukaan Kerucut

Sama halnya dengan limas dan tabung, cara menghitung luas kerucut akan lebih mudah kamu pahami juga dengan melihat jaring-jaringnya.

Luas permukaan merupakan jumlah dari luas alas dan luas bidang tegak atau selimut. Pada saat artikel mengenai bangun datar lingkaran, kita tahu bahwa rumus luas lingkaran adalah sebagai berikut

Luas Lingkaran: 𝜋.r²

Dimana, Luas lingkaran pada bangun ruang kerucut sama dengan luas alas. 

Sedangkan, secara matematis rumus luas selimutnya disusun sebagai berikut:

Luas Selimut Kerucut (Ls): 𝜋.r.s

Keterangan: Ls= Luas Selimut;  𝜋= pi, 22/7 atau 3,14; r= radius atau jari-jari lingkaran (m); s= panjang garis pelukis (m).

Oleh karena itu, rumus luas permukaan kerucut disusun sebagai berikut:

Luas Permukaan Kerucut: 𝜋.r (r+s)

Atau bisa juga kamu hitung dengan cara luas alas (La) ditambah dengan luas selimut (Ls). 

Rumus Volume Kerucut

Kalau tadi udah membahas mengenai luas permukaan, sekarang kita ke rumus volume bangun ruang kerucut. Secara matematis, rumus volumenya disusun sebagai berikut:

Volume Kerucut: ⅓ 𝜋.r².t

Di mana; 𝜋= pi, 22/7 atau 3,14; r= radius atau jari-jari lingkaran (m); t= tinggi (m).

Perlu diperhatikan bahwa terkadang ada komponen “s” dalam soal volume kerucut. Yang dimaksud dengan “s” untuk menghitung luas permukaan merupakan panjang dari titik puncak ke titik keliling alas.

Sedangkan, yang dimaksud dengan “t” untuk menghitung volume yaitu jarak titik puncak ke titik pusat alas, atau bisa kita katakan jarak dari titik pusat alas kerucut tegak lurus sampai ke titik puncaknya.

Silahkan buka link berikut:

https://www.youtube.com/watch?v=KPKC8I1dG3M

Setelah kalian mempelajari materi diatas silahkan bertanya jika masih ada yang belum paham. Tugas pertemuan sebelumnya yang sudah kita sepakati silahkan dikumpulkan ke ibu ya. Terimakasih.

Semoga pembelajaran hari ini bermanfaat bagi kita. Tetap melaksanakan 5m ya semoga pandemi ini segera berakhir. Aamiin. Terimakasih

Wassalamualikum Wr. Wb. 

Tidak ada komentar:

Posting Komentar