Senin, 13 Oktober 2025

Math

Matematika Kelas IX 


Transformasi Geometri

Pertemuan 9


Elemen Geometri

Media/alat peraga: Laptob dan LCD


Capaian Pembelajaran

Membuat jaring-jaring bangun ruang (prisma, tabung, limas dan kerucut) dan membuat bangun ruang dari jaring-jaringnya. Murid dapat menggunakan hubungan antar-sudut yang terbentuk oleh dua garis yang berpotongan, dan oleh dua garis sejajar yang dipotong sebuah garis transversal untuk menyelesaikan masalah (termasuk menentukan jumlah besar sudut dalam sebuah segitiga, menentukan besar sudut yang belum diketahui pada sebuah segitiga); menjelaskan sifat-sifat kekongruenan dan kesebangunan pada segitiga dan segiempat, dan menggunakannya untuk menyelesaikan masalah; menunjukkan kebenaran teorema Pythagoras dan menggunakannya dalam menyelesaikan masalah (termasuk pengenalan bilangan irasional dan jarak antara dua titik pada bidang koordinat Kartesius). Murid dapat melakukan transformasi tunggal (refleksi, translasi, rotasi, dan dilatasi) titik, garis, dan bangun datar pada bidang koordinat Kartesius dan menggunakannya untukmenyelesaikan masalah.

Tujuan Pembelajaran

Peserta didik dapat melakukan transformasi tunggal dilatasi


Assalamualaikum Wr. Wb.

Alhamdulillah hari ini dapat bertemu bersama untuk belajar matematika.
Selalu jaga kesehatan dan beribadah kepada Alloh SWT. Semoga selalu istiqomah dalam melaksanakan sholat dhuha dan sholat lima waktu.



Ayo simak materi!
Dilatasi adalah suatu transformasi yang mengubah ukuran suatu objek atau benda, bisa memperbesar atau memperkecil. Kalo jenis transformasi sebelumnya kan yang berubah hanya posisinya, nah kalo hasil dari dilatasi posisi sama ukurannya yang berubah tapi bentuknya tetap sama.

Unsur-Unsur Dilatasi

1. Pusat dilatasi atau titik acuan

Kalo dari ilustrasi di awal tadi sih, senter itu adalah pusat dilatasinya.

2. Faktor skala biasa disimbolkan dengan k

Maksudnya adalah faktor yang menyebabkan hasil dilatasi memperbesar atau memperkecil objek aslinya.

Rumus dilatasi tititk P (x, y) dengan titik pusat O(0, 0) dan faktor skala K.

P(x, y) = P'(Kx, Ky)

Rumus dilatasi tititk P (x, y) dengan titik pusat (a, b) dan faktor skala K.


P(x, y) = P'(k(x-a) + a, k(y – b) + b)



Contoh

Sebuah  titik A berada di (2, 4) didilatasi  sebesar dua kali lipatnya (K = 2). Di mana letak titik bayangan setelah dilatasi?

Pembahasan:

A (2, 4) → Aˡ (4, 8)



Ayo simak video!



Ayo Berlatih!

1. Sebuah segitiga dengan titik A berada di (2, 4), titik B berada di (2, 2), dan titik C berada di (4, 2). Segitiga tersebut akan mengalami pembesaran atau dilatasi sebesar dua kali lipatnya (K = 2). Di mana letak titik-titiknya jika segitiga itu mengalami dilatasi dua kali lipat?









Matematika Kelas VIII


Fungsi Linear

Pertemuan 1


Elemen Aljabar

Media/alat peraga: Laptob dan LCD


Capaian Pembelajaran

Mengenali, memprediksi dan menggeneralisasi pola dalam bentuk susunan benda dan bilangan; Menyatakan suatu situasi ke dalam bentuk aljabar; menggunakan sifat-sifat operasi (komutatif, asosiatif, dan distributif) untuk menghasilkan bentuk aljabar yang ekuivalen. Murid dapat memahami relasi dan fungsi (domain, kodomain, range) serta menyajikannya dalam bentuk diagram panah, tabel, himpunan pasangan berurutan, dan grafik; membedakan beberapa fungsi non linear dari fungsi linear secara grafik; menyelesaikan persamaan dan pertidaksamaan linear satu variabel; menyajikan, menganalisis, dan menyelesaikan masalah dengan menggunakan relasi, fungsi dan persamaan linear; serta menyelesaikan sistempersaman linear dua variabel melalui beberapa cara untuk penyelesaian masalah.

Tujuan Pembelajaran

Peserta didik dapat membedakan beberapa fungsi non linear dari fungsi linear secara grafik

(Peserta didik dapat membedakan cara menentukan gradien/kemiringan)


Assalamualaikum Wr. Wb.

Alhamdulillah hari ini dapat bertemu bersama untuk belajar matematika.
Selalu jaga kesehatan dan beribadah kepada Alloh SWT. Semoga selalu istiqomah dalam melaksanakan sholat dhuha dan sholat lima waktu.



Ayo simak materi!

Sebelum kita mempelajari tentang fungsi linear mari kita bahas dulu tentang gradien.
“Gradien adalah nilai yang menunjukkan kemiringan/kecondongan suatu garis lurus”
Umumnya, gradien disimbolkan dengan huruf “m”. Gradien akan menentukan seberapa miring suatu garis pada koordinat kartesius. Gradien suatu garis dapat miring ke kanan, miring ke kiri, curam, ataupun landai, tergantung dari nilai komponen X dan komponen Y nya.


“Garis yang gradiennya positif akan miring ke kanan, sedangkan garis yang gradiennya negatif akan miring ke kiri”




Cara Menentukan Gradien Suatu Garis Lurus

Terdapat beberapa cara untuk mencari nilai gradien suatu garis yang bisa kamu ketahui, yaitu:

1. Jika diketahui bentuk persamaan garisnya

Secara umum, bentuk persamaan garis lurus ada dua macam, sehingga cara untuk menentukan gradiennya juga berbeda beda, tergantung dari bentuk persamaan garisnya.

a. Persamaan garis y = mx + c

Pada persamaan garis ini, gradien dapat dicari dengan mudah. Kenapa? Karena gradiennya adalah koefisien dari variabel x itu sendiri, yaitu m.

Contoh:

1.    Garis y = 3x + 2, koefisien x adalah 3. Jadi, gradien garis tersebut adalah 3.


b. Persamaan garis ax + by + c = 0

Jika diketahui persamaan garis ax + by + c = 0, maka langkah pertama yang harus kamu lakukan adalah ubah persamaan garis tersebut ke bentuk y = mx + c, dengan m adalah gradien garis tersebut.

Di sini, kamu harus perhatikan tanda +/- dari koefisien masing-masing variabelnya, ya. Soalnya, tanda +/- akan berubah ketika kita pindah ruas persamaannya.

Hitunglah kemiringan (gradien) pada persamaan garis 5x + 2y – 8 = 0

Penyelesaian:

Pertama-tama, kita ubah dulu persamaan 5x + 2y – 8 = 0 ke bentuk y = mx + c, sehingga persamaannya menjadi,

5x + 2y – 8 = 0

2y = -5x + 8

Koefisien x bernilai positif, yaitu 5, sehingga setelah kita pindah ruas ke kanan akan bernilai negatif. Begitu juga dengan konstanta -8 yang berubah tanda menjadi 8 karena pindah ruas ke kanan. Selanjutnya, kita bagi kedua ruas dengan 2.

y = (-5/2)x + 4

Jadi, gradien dari persamaan garis tersebut adalah -5/2.

Atau menggunakan cara lain dengan rumus m = -a/b berarti
Diketahui a= 5 dan b=2 maka m = -5/2.


Ayo Berlatih!
1. Gradien garis yang memiliki persamaan y = 3x - 5 adalah ...
2. Gradien garis dengan persamaan 3x - 6y + 9 = 0 adalah ....
3. Gradien garis yang menghubungkan pasangan titik P(-3, 6) dan Q(5, -4) adalah ...





Tidak ada komentar:

Posting Komentar