Rabu, 04 Agustus 2021

Math 8

 Matematika


Kelas VIII

Pola Bilangan


3.1 Membuat generalisasi dari pola pada barisan bilangan dan barisan konfigurasi objek


Assalamu'alaikum Wr. Wb.

Selamat pagi sholeh sholehah! Bagaimana kabarnya hari ini?
Semoga kita selalu dalam keadaan sehat walafiat. Aamiin.
Alhamdulillah hari ini kita bisa bertemu kembali dalam pelajaran Matematika. 

Walaupun dirumah saja selalu jaga kesehatan, cuci tangan dengan sabun dan jangan lupa beribadah kepada Alloh SWT.
Sudah melaksanakan shalat dhuha kah? semoga kita selalu istiqomah dalam menjalankan sholat dhuha dan sholat lima waktunya ya.

Sebelum memulai pembelajaran mari bersama-sama kita berdoa terlebih dahulu.
Tujuan pembelajaran pada pertemuan hari ini adalah dapat mengidentifikasi pola bilangan dari suatu barisan.

Silahkan kalian pelajari materi berikut ya tentang macam-macam pola bilangan:

1 . Pola bilangan persegi panjang

Pola bilangan jenis ini akan menghasilkan bentuk menyerupai persegi panjang. Contohnya susunan angka 2, 6, 12, 20, 30, dan seterusnya. Untuk menentukan pola ke-n, kamu bisa menggunakan persamaan Un = n (n + 1) di mana n merupakan bilangan bulat positif. Jika digambarkan, pola bilangannya berbentuk seperti berikut.

Gambar di atas menunjukkan bahwa, susunan bilangan yang sedemikian sehingga memenuhi persamaan Un = n (n + 1) bisa membentuk suatu pola persegi panjang.

2. Pola bilangan persegi

Pola persegi adalah susunan bilangan yang dibentuk oleh bilangan kuadrat. Secara matematis, pola bilangan ini mengikuti bentuk Un = n2. Contoh susunan bilangan yang menghasilkan pola persegi adalah 1, 4, 9, 16, 25, 36, dan seterusnya. Jika dijabarkan dalam bentuk gambar, akan menjadi seperti berikut.

3. Pola bilangan segitiga

Dari namanya saja sudah bisa ditebak, kira-kira pola bilangannya akan membentuk bangun apa? Ya benar, segitiga. Segitiga yang dibentuk adalah segitiga sama sisi. Ada dua cara yang bisa Quipperian gunakan untuk membentuk pola ini, yaitu sebagai berikut.

a. Cara penjumlahan bilangan di mana selisih bilangan setelahnya + 1 dari bilangan sebelumnya. Perhatikan contoh berikut.

Bilangan pada baris kedua (di dalam kotak berbingkai merah) merupakan selisih dari pola bilangan sebelum dan setelahnya. Quipperian bisa melihat bahwa selisihnya selalu + 1 dari selisih sebelumnya. Kira-kira, bilangan setelah 15 berapa ya? Untuk memudahkan kamu menjawab, tentukan dulu selisih antara bilangan 15 dan setelahnya, yaitu +6. Jadi, bilangan setelah 15 adalah 15 + 6 = 21.

b. Cara kedua menggunakan rumus Un di mana Un⁄2 (+ 1).

Dengan cara ini, Quipperian bisa menentukan suku ke-n dengan lebih mudah. 

Secara umum, pola segitiga ditunjukkan oleh gambar berikut.

4. Pola bilangan Pascal

Pola bilangan Pascal ini ditemukan oleh ilmuwan asal Prancis, yaitu Blaise Pascal. Jika dituliskan, pola bilangan Pascal akan membentuk suatu segitiga. Segitiga tersebut dinamakan segitiga Pascal. Ada beberapa ketentuan yang harus Quipperian tahu terkait pola bilangan Pascal, yaitu sebagai berikut.

  • Baris paling atas (baris ke-1) diisi oleh angka 1.
  • Setiap baris diawali dan diakhiri dengan angka 1.
  • Setiap bilangan yang ditulis di baris ke-2 sampai ke-n merupakan hasil penjumlahan dari dua bilangan diagonal di atasnya (kecuali angka 1 pada baris ke-1).

  • Setiap baris berbentuk simetris.
  • Banyaknya bilangan di setiap barisnya merupakan kelipatan dua dari jumlah angka pada baris sebelumnya. Misalnya, baris ke-1 banyaknya bilangan = 1 maka baris ke-2 banyaknya bilangan = 2.

Adapun bentuk pola bilangan Pascal adalah sebagai berikut.

Gambar di atas menunjukkan bahwa pola bilangan Pascal itu sangat unik dan mudah sekali untuk dipahami. Untuk menentukan bilangan ke-n kamu bisa menggunakan persamaan 2n-1. Apakah Quipperian bisa melanjutkan bilangan ke-9?

Setelah mempelajari materi diatas, silahkan bertanya jika ada yang belum paham. Jika tidak ada yang ditanyakan silahkan membuat video sederhana menjelaskan ringkasan dari materi diatas kemudian kirimkan ke wa ibu. Terimakasih.

Sekian pembelajaran kita hari ini. Semoga menjadi ilmu yang bermanfaat untuk kita semua.
Tetap melaksanakan 3M semoga pandemi ini segera berakhir. Aamiin.
Terimakasih.

Waalaikumsalam Wr. Wb.

Tidak ada komentar:

Posting Komentar