Selasa, 31 Oktober 2023

Math IX

 Matematika

Kelas IX


Transformasi


3.5       Menjelaskan transformasi geometri (refleksi, translasi, rotasi, dan dilatasi) yang dihubungkan dengan masalah kontekstual

Tujuan pembelajaran pada pertemuan hari ini adalah agar peserta didik dapat menjelaskan transformasi Translasi.



Pengertian Transformasi Geometri

Transformasi berarti perubahan sebuah struktur menjadi bertambah, berkurang atau tertata kembali unsurnya. Sedangkan geometri berarti cabang matematika yang menjelaskan soal sifat garis, sudut, bidang, dan ruang.

Berdasarkan dua definisi tersebut transformasi geometri dapat disimpulkan sebagai perubahan bentuk dari sebuah garis, sudut, ruang, dan bidang.

Dalam kehidupan sehari-hari, transformasi geometri ini biasanya dimanfaatkan untuk pembuatan karya-karya seni dan desain arsitektur.

Jenis-jenis Transformasi Geometri

Transformasi geometri itu sendiri terdiri dari empat jenis, yaitu translasi, rotasi, refleks, dan dilatasi.

Berikut adalah pemaparan lengkap masing-masing jenis transformasi geometri:

1. Translasi (Pergeseran)

Translasi atau pergeseran merupakan jenis dari transformasi geometri di mana terjadi perpindahan atau pergeseran dari suatu titik ke arah tertentu di dalam sebuah garis lurus bidang datar. Akibatnya, setiap bidang yang ada di garis lurus tersebut juga akan digeser dengan arah dan jarak tertentu.

Translasi pada dasarnya hanya mengubah posisi, bukan bentuk dan ukuran dari bidangnya.

Contoh sederhana dari translasi adalah peristiwa yang terjadi di perosotan. Dimana orang yang sama dengan sebuah bidang berpindah posisi dari titik awal (awal perosotan) dan titik akhir (ujung perosotan). Contoh lainnya adalah kendaraan yang berjalan di jalan lurus, dari kejadian itu bisa dilihat bahwa kendaraan yang merupakan objek tidak mengalami perubahan ukuran tetapi hanya berpindah tempat.

Rumus dari translasi itu sendiri adalah:

(x’,y’) = (a,b) + (x,y)

Keterangan:

x’, y’ = titik bayangan

x,y = titik asal

a,b = vektor translasi

Contoh soal transformasi geometri jenis translasi

Tentukan titik bayangan jika titik A adalah (2, 4) dan ditranslasikan menjadi (6, 3)

Jawab:

(x’, y’) = (x +a, y+b)

(x’, y’) = (2+6, 4+3)

(x’, y’) = (8, 7)

Maka titik bayangannya ada di (8, 7)


Simak video berikut:

https://www.youtube.com/watch?v=yUDiYXiRcS8


Ayo berlatih

1. Tentukan bayangan titik (3,-7) oleh translasi (42)

2. Titik P'(2,-4) merupakan bayangan titik P(3,5) oleh translasi T. Carlah translasi T.

Tidak ada komentar:

Posting Komentar